Operations | Monitoring | ITSM | DevOps | Cloud

Latest Posts

Introducing Support for Hex Packages

JFrog has always prioritized universality, ensuring software development teams have true freedom of choice. Core to the JFrog Platform, JFrog Artifactory is the world’s most versatile artifact manager, natively supporting nearly 40 package types. After taking in valuable feedback from the developer community, we’re thrilled to discuss how we’re further expanding our universe with the support of Hex packages.

Building Cloud Excellence: How JFrog Supports the AWS Well-Architected Framework

In today’s hybrid infrastructure landscape, migrating applications to the cloud unlocks significant financial and technological benefits. Whether internal or external, these applications require robust, efficient infrastructure. Cloud providers like Amazon Web Services (AWS), Google Cloud, and Microsoft Azure offer frameworks to help organizations build better systems.

JFrog's Release Lifecycle Promotion vs. Build Promotion

We here at JFrog have long advocated for promoting – never rebuilding – release candidates as they advance across the stages of your SDLC. For many JFrog customers, that meant using JFrog’s “Build Promotion” capabilities. Now you can level up your CI/CD game with promotions using Release Lifecycle Management (RLM)! In this article we’ll show you why promotions with RLM are more simple, secure, and scalable than our legacy build promotion API.

The Power of Evidence Collection and Release Lifecycle Management

The speed of today’s software development lifecycle is only getting faster. However, the complexity of today’s pipelines make it hard to track and manage the processes software releases must go through. With increasing regulatory pressures, ensuring and proving your software has gone through the necessary quality controls is no longer nice to have – it has become a necessity.

MLOps Your Way with the JFrog Platform

Just like in traditional software development, creating AI applications isn’t a one size fits all approach. However, many of the challenges and concerns facing AI/ML development teams share common threads – difficulties getting models to production, tangled infrastructure, data quality, security issues, and so on.

Breaking Silos: Unifying DevOps and MLOps into a Cohesive Software Supply Chain - Part 3

The synergy between DevOps and MLOps is more crucial now than ever. However, merging these two paradigms into a coherent software supply chain poses a unique set of challenges that can leave teams feeling overwhelmed. From the complexities of managing model dependencies to adapting conventional CI/CD tools for advanced machine learning (ML) workflows, the path to integration isn’t without its twists and turns.

Breaking Silos: Unifying DevOps and MLOps into a Cohesive Software Supply Chain - Part 2

In this blog series, we will explore the importance of merging DevOps best practices with MLOps to bridge this gap, enhance an enterprise’s competitive edge, and improve decision-making through data-driven insights. Part one discussed the challenges of separate DevOps and MLOps pipelines and outlined a case for integration.

JFrog Cloud: Architected for Performance at Scale

Petabytes of monthly data transfer. Thousands of concurrent requests per customer. Hundreds of thousands of requests per minute per customer. The JFrog Platform is a mission critical piece of software development and delivery infrastructure for companies that require performance at scale. When you’re supporting thousands of developers, even a minute of downtime or delay can mean millions of dollars lost productivity.

Breaking Silos: Unifying DevOps and MLOps into a Cohesive Software Supply Chain - Part 1

As businesses realized the potential of artificial intelligence (AI), the race began to incorporate machine learning operations (MLOps) into their commercial strategies. But the integration of machine learning (ML) into the real world proved challenging, and the vast gap between development and deployment was made clear. In fact, research from Gartner tells us 85% of AI and ML fail to reach production.

Gain Clarity on Cloud Usage with Enhanced Monitoring from MyJFrog

We can all agree that visibility into resource usage is crucial for optimizing performance and managing costs to drive your business — especially in today’s cloud-driven world. MyJFrog is a comprehensive management portal for overseeing JFrog cloud platform instances and subscriptions. It provides a centralized control tower to manage and monitor subscriptions, resources, and usage.