Operations | Monitoring | ITSM | DevOps | Cloud

Latest Posts

Calico integration with WireGuard using kOps

It has been a while since I have been excited to write about encrypted tunnels. It might be the sheer pain of troubleshooting old technologies, or countless hours of falling down the rabbit hole of a project’s source code, that always motivated me to pursue a better alternative (without much luck). However, I believe luck is finally on my side.

kOps adds support for Calico's eBPF data plane

Kubernetes operations (kOps) is one of the official Kubernetes (K8s) projects. The kOps project allows for rapid deployment of production-grade K8s clusters in multiple cloud platforms. By leveraging yaml manifests, kOps delivers a familiar experience to users who have worked with kubectl. Similar to K8s clusters in popular cloud platforms, kOps helps set up self-managed clusters to easily deliver high availability.

Using Calico with Kubespray

In the Kubernetes ecosystem there are a variety of ways for you to provision your cluster, and which one you choose generally depends on how well it integrates with your existing knowledge or your organization’s established tools. Kubespray is a tool built using Ansible playbooks, inventories, and variable files—and also includes supplemental tooling such as Terraform examples for provisioning infrastructure.

Kubernetes observability challenges in cloud-native architecture

Kubernetes is the de-facto platform for orchestrating containerized workloads and microservices, which are the building blocks of cloud-native applications. Kubernetes workloads are highly dynamic, ephemeral, and are deployed on a distributed and agile infrastructure. Although the benefits of cloud-native applications managed by Kubernetes are plenty, Kubernetes presents a new set of observability challenges in cloud-native applications. Let’s consider some observability challenges.

Kubernetes security issues: An examination of major attacks

In a never-ending game of cat and mouse, threat actors are exploiting, controlling and maintaining persistent access in compromised cloud infrastructure. While cloud practitioners are armed with best-in-class knowledge, support, and security practices, it is statistically impossible to have a common security posture for all cloud instances worldwide. Attackers know this, and use it to their advantage. By applying evolved tactics, techniques and procedures (TTPs), attackers are exploiting edge cases.

A Sneak Peek at the "Calico Certified Operator: AWS Expert" Course

Recently, we released our new “Calico Certified Operator: AWS Expert” course. You can read more about why we created this course and how it can benefit your organization in the introductory blog post. This blog post is different; it’s an opportunity for you, the potential learner, to get a glimpse of just a few interesting parts of the course. You won’t learn all the answers here, but you’ll learn some of the questions!

Do you really need a service mesh?

The challenges involved in deploying and managing microservices have led to the creation of the service mesh, a tool for adding observability, security, and traffic management capabilities at the application layer. While a service mesh is intended to help developers and SREs with a number of use cases related to service-to-service communication within Kubernetes clusters, a service mesh also adds operational complexity and introduces an additional control plane for security teams to manage.

High-availability connectivity for Kubernetes with dual ToR

Dual ToR (top of rack) peering provides a redundant path for customers with cluster applications that cannot tolerate service downtime or failure and require a high-availability solution. While Calico ToR connectivity has existed for some time, Calico Enterprise now supports connectivity with dual ToR switches.